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Source Enumeration for High-Resolution Array
Processing Using Improved Gerschgorin Radii

Without Eigendecomposition
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Abstract—Accurate detection of sources with low complexity is
of considerable interest in practical applications of high-resolu-
tion array processing. This paper addresses a new computationally
efficient method for source enumeration by using enhanced Ger-
schgorin radii without eigendecomposition. The proposed method
can calculate the Gerschgorin radii in a more efficient manner, in
which the additive background noise can be efficiently suppressed
and the computational complexity can be considerably reduced.
Therefore, the method is more accurate and computationally at-
tractive. Furthermore, the method does not rely on the eigenvalues
of a covariance matrix or the signal/noise power, making it ro-
bust against deviations from the assumption of spatially white noise
model. Numerical results are presented to demonstrate the perfor-
mance of the method.

Index Terms—Direction finding, eigenvalue decomposition
(EVD), Gerschgorin radii, high resolution, minimum description
length (MDL), multistage Wiener filter (MSWF), sensor array
signal processing, signal enumeration.

I. INTRODUCTION

H IGH-RESOLUTION methods for direction finding can
be used in many areas, such as radar, sonar, wireless com-

munications, biomedical engineering and so on [1], [2]. As is
well known, the performance of the high-resolution methods,
such as MUSIC [3] and ESPRIT [4], essentially relies on a priori
knowledge of the number of sources. As a result, estimating
the number of sources becomes an important issue [5]–[17]. In
[5], Wax and Kailath originally addressed this problem by em-
ploying the Akaike information criterion (AIC) and minimum
description length (MDL). As a consistent estimator, the MDL
method has received more attention than the AIC estimator that
tends to overestimate the number of sources. Following [5], a
number of papers [6]–[14] have addressed the problem by en-
hancing the performance of the MDL method or by presenting
the performance analysis of the MDL estimator. Recently, we
addressed the issue of source enumeration by developing com-
putationally efficient MDL methods [16], [17].
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While the classical MDL method has been extensively
studied, its robustness and computational efficiency need to
be further improved. As is well known, the classical MDL
method is a model-dependent and eigenvalue-based estimator,
in which the additive noise is assumed to be a spatially white
process with equal power level. By minimizing the description
length between the assumed model and the observed model
characterized by the eigenvalues of a covariance matrix, the
MDL method yields a consistent estimate for the number of
sources. In some practical applications, however, the assump-
tion of the spatially white noise might be unrealistic because
the unknown noise environment may change slowly with time
[12], [13], [18]. In these scenarios, the sensor noises become
correlated from sensor to sensor and unequal in power level.
While the sensor noises may be uncorrelated among all sensors
in the array processing (in particular when the sparse arrays are
employed), their power levels are in general unequal due to the
nonidealities of the practical arrays, such as the nonideality of
the receiving channel, the nonuniformity of the sensor response
and the mutual coupling between sensors [12]. In the sequel, the
sensor noise is a spatially inhomogeneous white process, i.e.,
of unequal power level and uncorrelated from sensor to sensor.
When such a deviation from the spatially white noise model
occurs, the multiplicity of the smallest eigenvalues equals one
[5], [14] and the MDL estimator is thereby not necessarily
consistent. On the other hand, the MDL method only employs
the information of the eigenvalues of the covariance matrix,
and does not employ any other information of the covariance
matrix, such as the eigenvectors. Nevertheless, the unequal
power levels of the sensor noises only perturb the eigenvalues
and do not affect the eigenvectors. As a result, the MDL method
is only robust to the spatially white noise, but is not robust to
the spatially inhomogeneous noise. To improve the robustness
of the classical MDL method, a number of methods have been
addressed in [13]–[15]. In [13], Wu et al. developed a Ger-
schgorin disk estimator (GDE) for the number of sources that
is more robust than the classical MDL method. Performing a
unitary transformation of the covariance matrix by means of the
eigenvectors, Wu et al. obtained the transformed Gerschgorin
radii, and then used them to construct the GDE estimator to sep-
arate the signal Gerschgorin disks from the noise Gerschgorin
disks. Nevertheless, while the GDE estimator is more robust
against the deviation from the spatially white noise model than
the MDL method, it does not outperform the MDL method
in computational complexity since it, like the classical MDL
method, necessarily involves the calculation of the covariance
matrix and its eigenvalue-decomposition (EVD). Therefore,
the computational complexities of the GDE and MDL methods
need to be further reduced, in particular for the applications
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where the channel requires to be tracked in a real-time manner.
Moreover, like the MDL estimator, as an EVD-based method,
the GDE estimator also needs to use the covariance matrix
whose diagonal elements are corrupted by the noise power
levels. As a result, the EVD-based methods cannot efficiently
eliminate the additive noise, leading to the poor performance
for the case of small sample size. In this paper, we employ a
spatial matched filter to calculate the Gerschogirin radii, which
can significantly improve the signal-to-noise ratio (SNR) of
the incident signals, equivalently efficiently suppressing the
additive noise.

In the paper, motivated by the practical applications, we de-
velop a new method for source enumeration that offers the com-
putational simplicity and the robustness against the deviation
from the spatially white noise assumption. To avoid the noise
perturbation and reduce the computational complexity, we em-
ploy a procedure of multistage orthogonal projection similar to
that of the multi-stage Wiener filter (MSWF) [19], [20] to cal-
culate the Gerschgorin radii. More specifically, similar to the
method in [17], the sensor data of an array is partitioned into a
reference signal and an observation data of a successive refine-
ment procedure to calculate the desired signals of the MSWF.
Then, the cross-correlations between the desired signals of the
adjacent stages are directly used to calculate the Gerschgorin
radii instead of employing the eigenvectors of the covariance
matrix. Finally, a heuristic decision rule, like the GDE method
[13], is employed to yield the estimate of the number of sources.
Since the proposed method can efficiently suppress the additive
noise, the Gerschgorin radii can be estimated more accurately,
thereby leading to the more accurate separation of the signal
Gerschgorin disks from the noise Gerschgorin disks, which fi-
nally enhances the performance of the proposed method.

The remainder of the paper is organized as follows. The data
model is presented in the next section. The method for source
enumeration is proposed in Section III. Numerical results are
presented in Section IV. Finally, conclusions are drawn in
Section V.

II. DATA MODEL

Consider an array of sensors receiving
narrow-band sources from distinct directions

. The narrow-band sources are assumed to localize in
the far field, and the wavefronts can be thereby approximated
as planar. For simplicity, we also assume that the sources and
the sensors are in the same plane. In the sequel, the sensor data
of the array, excluding the last sensor data,1 is collected as

(1)

where , is the transpose operation and

the steering matrix

the source waveform vector

the noise vector

1The last sensor data of the array is not included in (1) since, in the proposed
method addressed in Section III, the first� sensor data and the last sensor data
of the array are used as the observation data and, respectively, the reference
signal of a successive refinement procedure, similar to the MSWF, to calculate
the Gerschgorin radii.

in which is the steering vector and
represents the unknown number of sources. The source

waveform, , is assumed to be a jointly sta-
tionary, statistically uncorrelated, zero-mean complex Gaussian
random process. Meanwhile, the additive sensor noise is
assumed to be an independent and identically distributed (i.i.d.)
complex, zero-mean, Gaussian vector with covariance matrix

, where denotes expectation,
is the noise power and denotes the identity matrix.
In addition, the noises are uncorrelated with the signals

. For a uniform linear array (ULA), the steering vector can
be expressed as

(2)

where represents the inter-sensor spacing and denotes
the wavelength. It is easy to see that the steering vectors

are linearly independent for any set
of distinct incident angles , and the steering
matrix is therefore full rank. In what follows, we assume
that the array is a ULA for simplicity while the proposed
method is not limited to this assumption.

Under these assumptions, the sensor data vector is a
complex Gaussian random process with zero mean and the fol-
lowing covariance matrix

(3)

where is the Hermitian transpose and
is the signal covariance matrix. The subspace spanned by
the columns of is called signal subspace while its or-
thogonal complement is called noise subspace. In practical
applications, however, only finite samples are available.
As a result, the sample-covariance matrix is calculated as

, where is finite.
Remark A: By examining (3), we can observe that the covari-

ance matrix is corrupted by the noise power levels at the diag-
onal elements, thereby indicating that the EVD-based methods,
such as the MDL method [5] and the GDE method [13], cannot
efficiently suppress the noise when calculating the eigenvalues
and the eigenvectors.

III. SOURCE ENUMERATION USING

IMPROVED GERSCHGORIN RADII

To address the proposed method more clearly, we first briefly
review the Gerschgorin’s disk theorem that has been employed
to estimate the number of sources by Wu et al. [13].

A. Gerschgorin’s Disk Theorem

According to the Gerschgorin’s disk theorem, the Ger-
schgorin center and the Gerschgorin radius of a matrix can be
determined by the elements of the matrix. More specifically, for
a complex matrix , the sum of the magnitudes
of all elements of the th row vector, excluding the th element,
is defined as

(4)



5918 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 12, DECEMBER 2008

In the sequel, the th Gerschgorin disk of the complex matrix
can be defined as the collection of points in a complex

plane:

(5)

where denotes the center of the th disk. As a result, the
center and the radius are called the Gerschgorin center and,
respectively, the Gerschgorin radius. It is shown in [21] that the
eigenvalues of are contained in the union of the disks .
Furthermore, if a collection of Gerschgorin disks of is
isolated from the other Gerschgorin disks, there exist exactly
eigenvalues of contained in this collection. In the sequel, if
the Gerschgorin disks are correctly collected in a union of the
disks, we can estimate the number of sources from the collec-
tion. Nevertheless, as noted in [13], since all the Gerschgorin
radii are in general large and the Gerschgorin centers are close to
each other, the Gerschgorin disks of the original covariance ma-
trix cannot be directly used to estimate the number of sources.

To cure this problem, Wu et al. [13] introduced a unitary
transformation of the covariance matrix to separate the signal
Gerschgorin disks from the noise Gerschgorin disks, and devel-
oped two estimators for source number, namely the Gerschgorin
likelihood estimator (GLE) and GDE. Nevertheless, the calcu-
lation of the unitary transformation matrix necessarily includes
the estimate of the covariance matrix and its EVD computa-
tion, thereby making the GLE and GDE methods quite com-
putationally intensive. In the next subsection, we will propose
a new method to calculate the Gerschgorin disks, which avoids
the estimate of the covariance matrix and its EVD computation,
thereby making the proposed method more computationally at-
tractive than the EVD-based methods. Meanwhile, in the cal-
culation of the Gerschgorin radii, the proposed method can ef-
ficiently suppress the additive noise. As a result, the proposed
method can yield the more accurate estimate of the number of
sources than the EVD-based methods.

B. Novel Method for Gerschgorin Disk Calculation

In this subsection, we present a new method to accurately
calculate the Gerschgorin centers and the Gerschgorin radii.
To begin with, let be the observation data and

be the reference signal of a successive re-
finement procedure similar to the MSWF, where

is the last sensor data of the array and
. In the sequel, the cross-correlation between the

observation data and the reference signal can be calculated as

(6)

where is the complex conjugate and . Consid-
ering is a nonsingular matrix yields . As a result, the
cross-correlation is a linear combination of all the direc-
tion vectors , which thereby implies that
the cross-correlation can capture the signal information.
Meanwhile, it is shown in (6) that the additive noise has been
efficiently suppressed in the procedure of calculating . Ac-
tually, the cross-correlation is a spatial matched filter of
the incident signals, which is plotted in Fig. 1. Therefore, when
used as a matched filter to extract the desired signals from the

Fig. 1. Response of the spatial matched filter ��� . The direction of a single
incident signal is 0 , the number of sensors is 8, and SNR equals 0 dB.

observation data, the cross-correlation can help to improve the
SNR of the desired signals. A normalized version of the spatial
matched filter is defined as

(7)

where denotes the vector norm. Partitioning the observation
data with the matched filter in a manner similar to
that of the multistage Wiener filter (MSWF) [19], we attain the
desired signal and the observation data at the th
stage by

(8)

and

(9)

where is the blocking matrix and the matched
filter is calculated by

(10)

The refinement procedure (8)–(10) indicates that the desired
signal is yielded by filtering the observation data
with the matched filters , but annihilated in (9). The obser-
vation data is partitioned stage-by-stage in the same refinement
manner. As a result, after performing successive recursions,
we obtain desired signals of the MSWF, which can be col-
lected as

(11)

where . From (8)–(10), it is easy to
prove that the matched filters are orthogonal to each other, i.e.,

. The proof is given in
Appendix A. As a result, is a unitary matrix.
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Lemma 1: For an Hermitian matrix
, i.e., , the covariance matrix of the

desired signals , i.e.,

(12)

is an Hermitian tridiagonal matrix, and can be explicitly ex-
pressed as

. . .
. . .

. . .

. . .
. . .

. . .

(13)

where , ,
, and

denotes the absolute value.
Proof: The proof of Lemma 1 is seen in Appendix B.

According to the Gerschgorin’s disk theorem, the Ger-
schgorin centers and Gerschgorin radii of the tridiagonal
matrix can be calculated from (13) as

(14)

(15)

where and . Note in (13) that
and . As

a result, it follows from (15) that and
.

Remark B: As noted above, the cross-correlation is the
spatial matched filter of the incident signals, which can cap-
ture the signal information and efficiently suppress the additive
noise, thereby significantly improving the SNR of the incident
signals that are within the beamwidth of the matched filter (i.e.,
the benefit of the beamformer). In the sequel, when is em-
ployed as the initial information for the refinement procedure
to extract the desired signals from the observation data, the de-
sired signals can be yielded more accurately, leading to the more
accurate estimates of the correlations and the cross-correla-
tions . Meanwhile, it is shown in (30) that the noise term
(i.e., ) is equal to zero due to the orthogonality of the
matched filters, implying that the background noise can be fur-
ther suppressed in the calculation of . Consequently, it fol-
lows from (14) and (15) that the Gerschgorin centers and radii
are more accurate than that computed from the covariance ma-
trix in the EVD-based GDE method [13], in particular when all
the incident signals are within the beamwidth of the matched
filter.

C. Numerical Example

For a scenario where SNR equals 5 dB, the sample size
is 128 and there exist two sources impinging upon a ULA
of 10 elements from distinct incident directions {0.5 ,

Fig. 2. Gerschgorin disks of the calculated original covariance matrix. � de-
notes the centers of the Gerschgorin disks.

6.2 }, the calculated original covariance matrix is given
by . According to (4) and
(5), the Gerschgorin centers and radii can be easily obtained,
and the Gerschgorin disks are plotted in Fig. 2. It can be
observed in Fig. 2 that all the Gerschgorin radii are large and
the Gerschgorin centers are very close to each other, which
indicates that the Gerschgorin radii cannot make any sense yet
to estimate the number of sources.

After filtered by , however, the original covariance matrix
is transformed to a tridiagonal matrix , shown at the

bottom of the next page. Here and
. In the sequel,

using (14) and (15) we can obtain the centers and radii of the im-
proved Gerschgorin disks, which are given in Table I. The cor-
responding Gerschgorin disks are plotted in Fig. 3. From Table I
and Fig. 3, we can observe that the enhanced Gerschgorin disks
offer the quite large signal Gerschgorin radii and very small
noise Gerschgorin radii, which can make more sense to estimate
the number of sources.

D. Reduced-Rank Gerschgorin Disk Estimator for Source
Number

Denoting the eigendecomposition of the covariance matrix
as

(16)

where in which
are the eigenvalues and in

which are the corresponding eigenvectors,
and substituting (16) into (12) yields

(17)

where . Obviously, is also a unitary matrix. As a
result, it follows from (16) and (17) that and share the
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TABLE I
GRESCHGORIN CENTERS AND RADII OF THE CALCULATED TRIDIAGONAL MATRIX

Fig. 3. Gerschgorin disks of the calculated tridiagonal matrix. � denotes the
centers of the Gerschgorin disks.

same eigenvalues (i.e., ). Using the Gerschgorin’s disk the-
orem discussed above, it follows, therefore, that the eigenvalues
of (i.e., are contained in the collections of the
Gerschgorin disks that are determined by the tridiagonal matrix

. In other word, all the eigenvalues of must be contained
in the collections of the Gerschgorin disks with the centers
and the radii . Meanwhile, it should be noted that the eigen-
values of and the diagonal elements of (i.e., ) are
real. Therefore, we can estimate the locations of the eigenvalues
along the real axis.

When the sample size tends to infinity, we obtain that
and . Mean-

while, notice that . Consequently,
it follows that the smallest eigenvalues are exactly
contained in the collection of the Gerschgorin disks centered
around with the zero radii

. Since all the eigenvalues of must
be contained in the collections of the Gerschgorin disks de-
termined by , the remainder largest eigenvalues must be
contained in the collection of the Gerschgorin disks centered
around with the nonzero radii

. The disks with zero radii (i.e., )
can be regarded as the noise Gerschgorin disks whereas the disks
with nonzero radii (i.e., ) can be regarded as the
signal Gerschgorin disks. Therefore, the number of sources can
be determined by counting the number of nonzero Gerschgorin
radii. If only finite samples are available, however, the noise
Gerschgorin radii do not equal zero. In this scenario, we need
to use a decision rule to determine the number of sources. Em-
ploying a decision rule similar to that of [13], a Gerschgorin disk
estimator for source number without eigendecompositon, called
GDEWE, can be defined as

GDEWE (18)

where is an adjustable factor that can be selected as
in which is a positive number generally

not greater than . It is easy to see that is a non-
increasing function as the sample size increases. By detecting
the first nonpositive value of GDEWE , we can obtain the
estimate of the number of sources as .

By examining (13) and (15), we can see that the last
Gerschgorin disks are of zero Gerschgorin

radius. In the sequel, the reduced desired signals, say
, are

enough to correctly enumerate the sources. Here represents
the dimension of the reduced-rank observation space. There-
fore, a reduced-rank GDEWE estimator can be defined as

GDEWE (19)
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The number of sources can be estimated as when the
first nonpositive value of GDEWE is detected.

Remark C: It is indicated in (15) that the Gerschgorin radii
can be directly computed in the refinement procedure [i.e.,
(8)–(10)], avoiding the estimate of the covariance matrix and
its EVD computation. Meanwhile, it is shown in (8)–(10) that
the refinement procedure only involves complex vector-vector
products, and does not include any complex matrix-vector
products, thereby only requiring around flops for each
snapshot and each stage. In the sequel, the computational cost
of the full-rank GDEWE estimator is about flops,
and the computational cost of the reduced-rank GDEWE esti-
mator can be reduced to around flops. However, the
EVD-based methods, such as the GDE method of [13], neces-
sarily involve the estimate of the covariance matrix and its EVD
computation, which require around flops.
In addition, to calculate the transformed Gerschgorin radii, the
GDE method still needs to use the projection of the last column
of the estimated covariance matrix onto the unitary matrix
consisting of the eigenvectors, requiring additional
flops. Therefore, the proposed method is more computationally
attractive than the EVD-based methods, in particular when the
sensor array is large.

E. Rank J Adaptation

It follows from (19) that the performance of the reduced-rank
GDEWE method relies on the dimension of the reduced-rank
observation space (i.e., ). When is less than the true number
of sources (i.e., ), the reduced-rank GDEWE cannot correctly
detect the sources while it may be computationally attractive.
When , however, the reduced-rank GDEWE method
does can detect the number of sources but might be not compu-
tationally simple any more provided that . Therefore,
the correct selection of is also important for the reduced-rank
GDEWE method.

Note that, in the practical applications,
are small number unequal to zero due to the

finite sample size while are
generally greater than one. In the sequel, to make the dimension
of the reduced-rank observation space adaptively adjustable,
we define the detector of similar to that in [17] as

(20)

where is a small positive constant.

IV. NUMERICAL RESULTS

The performance of the proposed GDEWE estimator is eval-
uated by computer simulation in this section. For fair compar-
ison, the empirical results of the GDE method developed by Wu
et al. [13], the traditional MDL estimator proposed by Wax and
Kailath [5] and the reduced-rank MDL approach proposed by
Huang et al. [17] are also presented. We consider a ULA with ten
sensors whose spacings equal half-wavelength. There exist two
uncorrelated signals in the far field with equal power impinging
upon the ULA from the directions . The background
noise is assumed to be a stationary Gaussian random process,
which is uncorrelated with the incident signals.

We first consider the case of spatially white noise. To calcu-
late the probability of correct detection, three hundred Monte
Carlo trials have been run. Fig. 4 depicts the detection perfor-
mance of the GDEWE method as a function of the number of

Fig. 4. Probability of correct detection of the GDEWE method versus number
of snapshots for different ranks in the case of spatially white noise. �� � � � �
���� � ��� �, SNR � 0 dB, � � ��, and � varies from 16 to 1024.

snapshots for different ranks. In this case, the SNR is defined as
the ratio of the power of signals to the power of noise at each
sensor. It can be observed that the full-rank GDEWE method
(i.e., ) offers the best detection performance among
the cases, whereas when and the
adaptive reduced-rank GDEWE method is more robust than the
full-rank GDEWE method. More specifically, the adaptive re-
duced-rank GDEWE method surpasses the full-rank GDEWE
method for a moderate sample size, say and is less
accurate than the latter when the number of snapshots becomes
smaller than 32. It can also be observed that the reduced-rank
GDEWE method becomes less accurate when is fixed to 3
or 4. This is due to the fact that when the sample size becomes
small, the noise Gerschgorin radii are very close to the signal
Gerschgorin radii, thereby increasing the possibility of error de-
tection of the reduced-rank GDEWE method, in particular when
the rank is very close to the true number of sources. The detec-
tion performance of the reduced-rank GDEWE method versus
the number of snapshots for the different in is illus-
trated in Fig. 5. It is indicated in Fig. 5 that the larger the is,
the earlier the reduced-rank GDEWE method reaches 1. Never-
theless, as increases, the reduced-rank GDEWE method be-
comes less accurate for small sample size. As a result, should
be selected as 2.5.

The empirical results of the reduced-rank GDEWE method,
the GDE method, the reduced-rank MDL approach and the tra-
ditional MDL estimator varying with the number of snapshots
are depicted in Fig. 6. In the reduced-rank GDEWE method
and the reduced-rank MDL method, the threshold is set to
0.1 to determine the dimension of the reduced-rank observation
space (i.e., ). Meanwhile, for comparison, the adaptively ad-
justable factors of the reduced-rank GDEWE method and the
GDE method [13] are set as . In addition,
note that the MDL method [5] needs to use the observation data
of 10 sensors (i.e., ), whereas the reduced-rank GDEWE
method and the reduced-rank MDL method only use the obser-
vation data of 9 sensors (i.e., ). It is shown in Fig. 6 that
all the methods approach to 1 when the number of snapshots
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Fig. 5. Probability of correct detection of the GDEWE versus number of snap-
shots for different� in the case of spatially white noise. �� � � � � ���� � ��� �,
SNR � 0 dB, � � ��, and � varies from 16 to 1024.

Fig. 6. Probability of correct detection versus number of snapshots for the case
of spatially white noise. �� � � � � ���� � ��� �, SNR � 0 dB, � � ��, and �
varies from 16 to 1024.

tends to infinity. This thereby indicates that all the methods are
robust to the spatially white noise. Meanwhile, from Fig. 6 we
can observe that the reduced-rank GDEWE method surpasses
the other three methods in detection performance, in particular
when the number of snapshots becomes small.

To study the angular separation between sources needed for
reliable detection, we assume that the directions of the two
sources are given as in which
denotes the angular separation. Fig. 7 depicts the empirical
probabilities of correct detection versus the angular separation,
in which the number of snapshots is 256, SNR equals 5 dB, and
the angular separation varies from 0 to 8 . Since the number
of snapshots is fixed, the adaptively adjustable factor is set as

for the GDEWE and GDE methods. Fig. 7 indi-
cates that the GDEWE method is more accurate than the GDE

Fig. 7. Probability of correct detection versus angular separation 	
�� for the
case of spatially white noise. �� � � � � ���� � � �
��, SNR � 5 dB, � �
���, � � ��, and the angular separation varies from 0 to 0 .

method, especially when the angular separation is less than
4 . An interesting observation herein is that the reduced-rank
GDEWE method can successfully enumerate the spatially
close sources. This is due to the fact that in this case the spatial
matched filter can significantly enhance the SNR of the incident
signals that are within the beamwidth of the matched filter,
and thereby can considerably reduce the possibility of error
detection of the GDEWE method.

Consider now the scenario of spatially inhomogeneous noise.
In this scenario, we assume that the sensor noises are the spa-
tially inhomogeneous white Gaussian processes, whose power
levels are subject to a uniform distribution over the interval

, given as

In the sequel, exploiting the definition of the worst noise power
ratio (WNPR) in [18], we obtain WNPR

(Note that WNPR represents the scenario of spatially
white noise.) Similarly, to calculate the empirical probabilities
of correct detection of the four methods, three hundred Monte
Carlo trials have been run. The thresholds of the reduced-rank
GDEWE method and the reduced-rank MDL method are set as

to determine the dimension of the reduced-rank obser-
vation space. Meanwhile, the adaptively adjustable factor is still
set as for the GDEWE and GDE estimators.

Fig. 8 depicts the empirical results of the four methods versus
the number of snapshots in the case of spatially inhomogeneous
noise. In this case, the SNR is defined as the power of signals to
the average power of noises. From Fig. 8, we can observe that
the probabilities of correction detection of the classical EVD-
based MDL method and the reduced-rank MDL method con-
verge to zero as the number of snapshots increases. It is easy
to interpret this phenomenon. Note that the EVD-based MDL
method is based on the equality of the smallest eigenvalues, and
the reduced-rank MDL method is based on the equality of the
variances of the last desired signals of the MSWF. On
the other hand, note that the unequal power levels of the sensor
noises lead to the differences in the smallest eigenvalues and
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Fig. 8. Probability of correct detection versus number of snapshots in the case
of spatially inhomogeneous noise. �� � � � � ���� � ��� �, SNR � 5 dB,
WNPR � ��, � � ��, and � varies from 16 to 4096.

also result in the differences in the variances of the last
desired signals of the MSWF. This thereby causes more sources
(namely the so-called “virtual” sources addressed in [14]) to
be detected in the EVD-based MDL and reduced-rank MDL
methods. When the number of snapshots is not large enough,
the EVD-based MDL method cannot detect the differences in
the smallest eigenvalues, and the reduced-rank MDL method
cannot detect the differences in the variances of the last
desired signals either. As a result, neither the EVD-based MDL
method nor the reduced-rank MDL method can detect the “vir-
tual” sources resulted from the differences. As the number of
snapshots becomes large enough, however, both of them detect
the “virtual” sources as valid sources, thereby leading to an error
event. Consequently, neither the EVD-based MDL method nor
the reduced-rank MDL method are robust to the spatially inho-
mogeneous noise. Nevertheless, the GDE method can success-
fully enumerate the sources even when the number of snapshots
becomes large enough because it is only based on the eigenvec-
tors, and independent of the eigenvalues. Also, the reduced-rank
GDEWE method can correctly estimate the number of sources
since it only relies on the cross-correlations of the desired sig-
nals of the MWSF, and does not need the eigenvalues or the
signal/noise power levels. Furthermore, Fig. 8 implies that the
reduced-rank GDEWE method outperforms the GDE method in
detection performance, particularly when the number of snap-
shots is less than 64. As noted previously, in the calculation of
the Gerschgorin radii, the GDEWE method can efficiently elim-
inate the additive noise and capture the information of the inci-
dent signals. As a result, the Gerschgorin radii are more accurate
than that derived from the eigenvectors in [13]. This eventually
leads to the improved performance of the reduced-rank GDEWE
method.

Fig. 9 shows the empirical probabilities of correct detection
of the four methods varying with the angular separation. Again,
since there is no variation in the number of snapshots, the adap-
tively adjustable factors of the GDEWE and GDE estimators
are set to 1. As an eigenvalue-based method, the classical MDL
method fails to correctly estimate the number of sources. The
reduced-rank MDL method cannot successfully enumerate the

Fig. 9. Probability of correct detection versus angular separation in the case of
spatially inhomogeneous noise. �� � � � � ���� � � 	
��, SNR � 10 dB,
� � ���, WNPR � ��, � � ��, and 
� varies from 0 to 8 .

Fig. 10. Probability of correct detection versus WNPR. �� � � � �
���� � ��� �, SNR � 5 dB, � � ���, � � ��, and WNPR varies
from 1 to 50.

sources either since it relies on the assumption of spatially
white noise. However, since the reduced-rank GDEWE method
and the GDE method are robust to the spatially inhomogeneous
noise, they can correctly enumerate the sources in this case.
Meanwhile, the reduced-rank GDEWE method surpasses the
GDE method in detection performance, in particular when the
angular separation becomes smaller than 4 , as indicated in
Fig. 9. Therefore, the GDEWE method is more accurate than
the GDE method, especially when all the incident signals are
within the beamwidth of the spatial matched filter.

To study the robustness of the methods against different
WNPRs, we calculate their probabilities of correct detection
versus the WNPR, which are shown in Fig. 10. Since the GDE
and GDEWE methods are robust to the spatially white noise
and the spatially inhomogeneous noise, they can correctly esti-
mate the number of sources when the WNPR varies from 1 to
50, as is indicated in Fig. 10. However, as an eigenvalue-based
method, the classical MDL method can merely detect the
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signals for WNPR that represents the case of the spa-
tially white noise, but cannot correctly estimate the number of
sources when WNPR becomes greater than 1, which represents
the case of the spatially inhomogeneous noise. Similarly, since
the reduced-rank MDL estimator is also only robust to the
spatially white noise, it cannot correctly enumerate the sources
as WNPR .

V. CONCLUSION

In this paper, we have developed a method for source enumer-
ation by using the improved Gerschgorin radii without eigende-
composition. In the proposed method, the Gerschgorin radii can
be directly calculated in the recursion procedure of the MSWF,
avoiding the estimate of the covariance matrix and its EVD com-
putation, and thereby making the proposed method a favorable
choice for the practical implementations. Meanwhile, the pro-
posed method can efficiently suppress the additive noise and
capture the signal information when calculating the Gerschgorin
radii, thereby leading to the more accurate separation of the
signal Gerschgorin disks from the noise Gerschgorin disks. This
results in the more accurate estimate of the number of sources
for the proposed method.

APPENDIX A
PROOF OF THE ORTHOGONALITY OF THE MATCHED FILTERS

Substituting (8) and (9) into (10) and recalling that
, we obtain

(21)

where

(22)

To prove the orthogonality of , we employ
the following induction argument. First, it is easy to verify from
(21) that is orthogonal to . Suppose, now, that is or-
thogonal to for , . Substituting (22) into (21)
yields

(23)

It can then be obtained from (23) that is orthogonal to
, namely is orthogonal to for

, . Therefore, are orthogonal to
each other.

APPENDIX B
PROOF OF LEMMA 1

It is straightforward to verify from (12) that is an
Hermitian matrix since is also an Hermitian matrix.
Consider now the tridiagonal property of . By setting

, (23) can be rewritten
as

(24)

where . It follows that

(25)

In the sequel, for , we obtain the th element of as

(26)

.
(27)

Considering that is an Hermitian matrix, it follows, thereby,
from (27) that is a tridiagonal matrix. As a result, is an
Hermitian tridiagonal matrix.

Employing the results of [17], i.e., the first matched filters
span the signal subspace while the last

matched filters span the noise subspace, we
can obtain . In the sequel,
substituting (3) into (26) yields

(28)

For , it follows from (27) and (28) that

.
(29)

For , we obtain from (27) and (28) that

.
(30)

Therefore, recalling that is an Hermitian matrix, it follows
from (29) and (30) that the tridiagonal matrix can be written
as (13). This completes the proof of Lemma 1.
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